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Abstract

Maintaining consistent quality in pharmaceutical manufac-
turing is especially challenging in the manual production of
gene therapeutics, where operator interactions within isolator
environments play a crucial role. Traditional methods rely on
manual documentation or basic video monitoring using single
or multi-camera setups. Such approaches are limited in accura-
cy and scalability. This study proposes a novel framework that
replaces conventional image analysis with advanced computer
vision and real-time 3D modeling. By reconstructing operator
actions in three dimensions, the system offers enhanced spa-
tial precision and a richer interpretation of quality-relevant
parameters. This capability enables more accurate monitoring
of critical tasks, supports traceability, and strengthens process
integrity. Through selected use cases, we demonstrate how this
approach can improve the reliability of operator tracking and
introduce new possibilities for quality assurance and auditing
in the production of gene therapies. The results highlight the
transformative potential of 3D computer vision technologies in
regulated pharmaceutical environments.
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1 Introduction

Manufacturing of gene therapeutics is typically performed un-
der Good Manufacturing Practice (GMP) controls in cleanrooms,
restricted-access barrier systems (RABS) or isolators, where per-
sonnel interactions are tightly constrained to minimize contam-
ination risks. The manufacturing process of gene therapeutics
in isolators needs to utilize complex devices, such as an elec-
troporator, a centrifuge, or automatic pipettes. These devices
require careful observation for their function and proper setup.
The latest revision of EU GMP Annex 1 emphasizes a holistic
Contamination Control Strategy (CCS), upgraded environmen-
tal monitoring, and the use of appropriate technologies such
as isolators and robotics for sterile manufacturing principles
that directly influence how operator tasks are performed and
verified in practice [1]. In parallel, FDA's Aseptic Processing guid-
ance explicitly addresses personnel qualification, cleanroom
design, environmental monitoring, and the use of isolators,
underlining the critical role of human interventions in sterile
operations [2,3]. Gene therapy production adds further com-
plexity: small batch sizes, manual manipulations, and variable
workflows make consistency difficult and magnify the impact
of operator technique on quality and safety [4,5].

Traditional documentation (paper/electronic batch records)
and basic video monitoring offer limited spatial fidelity and are
often retrospective, constraining timely detection of deviations
and weakening traceability of complex manual tasks. Regulato-
ry expectations for trustworthy, audit-ready electronic records
(21 CFR Part 11) increase the burden on manufacturers to en-
sure data integrity, attribution, and complete audit trails across
operator-driven steps [6,7]. Moreover, contamination control

scholarship and industry practice repeatedly identify personnel
interventions and airflow disturbances around operators as
dominant risks. Airflow visualization and computational fluid
dynamics analyses show how human motion can perturb uni-
directional flow and particle transport in critical zones. These
effects are hard to evaluate from single-view 2D footage [8,9].
In cell and gene therapy settings, these gaps are exacerbated
by frequent product changeovers, bespoke methods, and
scale-out rather than scale-up, all of which strain conventional
monitoring approaches [4].

Advanced computer vision (CV) has transformed quality
control in other pharmaceutical operations (e.g., packaging
and visual inspection), demonstrating robust defect detection
and in-line analytics [10]. However, most deployments focus
on product surfaces rather than a precise 3D understanding of
human actions in aseptic workspaces. Recent progress in multi-
view, real-time 3D human pose estimation (3D HPE) enables
accurate, low-latency reconstruction of human kinematics from
multiple cameras, even under occlusions, and opens a pathway
to quantify operator posture, hand trajectories, and tool-mate-
rial interactions in three dimensions [11-13]. When fused with
process metadata, 3D reconstructions could map movements
to GMP-relevant actions, verify adherence to standard operat-
ing procedures (SOP), and contextualize events against airflow
or environmental monitoring data to explain deviations better.
Aligning such CV-derived records with quality requirements of
FDA CFR Part 11 and EudralLex strengthens data integrity, trace-
ability, and review activities [6,7].

This work introduces a framework that can replace con-
ventional, essentially 2D image analysis with multi-camera
advanced CV and real-time 3D modeling of operator actions
within an isolator. Specifically, we aim to: (i) reconstruct op-
erator kinematics in 3D with sufficient spatial precision for
GMP-relevant tasks; (ii) extract quality-relevant parameters (e.g.,
hand-vial distances, exposure durations, transfer paths) aligned
to SOP steps; (iii) integrate outputs with CCS elements to better
understand contamination risk; and (iv) generate reviewable,
Part 11-supportive records that enhance traceability and
auditability. By grounding the approach in current regulatory
guidance [1,2,6] and leveraging state-of-the-art real-time 3D
HPE [11-13], we target measurable improvements in monitor-
ing accuracy and process integrity for the manual production
of gene therapies.

2 Related Work

Current industrial practice increasingly integrates automated
visual inspection (AVI) into aseptic and isolator lines as part of
pharmaceutical process monitoring, combining multi-camera
imaging, controlled lighting, and AI/ML classifiers to detect
visible particles, container/closure defects, cosmetic flaws, and
fill-volume errors. These systems support 100% inspection and
can replace or complement manual inspection when properly
qualified. Regulators explicitly encourage the use of “appropri-
ate technologies” and continuous monitoring systems in a ster-
ile production context that has accelerated AVl adoption and its
tighter linkage with batch release decisions [14].

In traditional aseptic processing, many operations are still
carried out by hand inside cleanrooms or isolators. Hand pose
estimation and tracking, together with general objects detec-
tion and tracking, are extensively researched areas in CV. Hand
pose estimation in 2D or 3D is typically performed using RGB
[15], RGB-D, or depth images as input. A similar approach holds
for reliable object detection [16]. Depth information is invalu-
able because it provides extra details about the shape and
distance of objects. This makes pose estimation and object de-
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tection more reliable, especially when body parts and objects
are occluded or when the background is cluttered.

In recent years, deep learning has greatly advanced hand
pose estimation. A typical pipeline includes three steps [17, 18].
First, a hand detection algorithm (e.g., YOLO [19], MediaPipe
palm detector [20], or transformer-based detector [21]) is used
to localize the hand region within an image or video frame. The
result is usually a bounding box or segmentation mask. In the
second step, 2D keypoints are extracted to mark the anatomi-
cal landmarks of the hand. Frameworks such as OpenPose and
MediaPipe are widely used for this task, as they can generate
reliable skeleton representations that serve as the basis for sub-
sequent action recognition. Finally, 3D hand pose estimation
converts the 2D landmarks into a complete 3D skeleton of the
hand. This works best with depth or RGB-D input, which directly
provides the missing third dimension.

Pose estimation is also widely used as input for action recog-
nition or hand-object interaction detection [22]. Pose features
capture the motion and articulation of the body or hands, while
RGB frames provide additional context, such as the objects
being held or the surrounding scene [23]. Depth information,
when available through RGB-D sensors, adds valuable geomet-
ric cues that make recognition more robust under occlusion
and viewpoint changes. Combining pose, RGB, and depth has
been shown in many studies [24, 25] to improve action recogni-
tion performance significantly.

Across high-precision industries, 3D modelling is already cen-
tral to quality assurance. In semiconductors, manufacturers use
volumetric non-destructive testing [26] (e.g., X-ray microscopy,
scanning acoustic microscopy, terahertz microscopy) to provide
precise detection and quantification of defects in manufactured
components, thereby enabling more reliable, automated qual-
ity assurance and process optimization. In aerospace, high-res-
olution X-ray CT is routine for 3D exploration and modeling
to detect internal defects in carbon fibre reinforced polymer
(CFRP) [27]. At the same time, digital-twin methods can fuse 3D
assemblies with live shop-floor data to assess geometric devia-
tion and predict quality during product assembly [28]. Emerg-
ing human digital twins (HDTs) extend this idea by reconstruct-
ing operator actions from multi-camera video and VR pipelines
to provide continuous, objective conformity feedback [29]. For
biotech and sterile manufacturing, these examples show how
multi-view 3D reconstructions (of parts or people) can quantify
tolerances, exposure paths, and intervention timing—princi-
ples that translate directly to isolator-based CGT workflows to
strengthen traceability and deviation analysis.

3 Materials and Methods

3.1 Prototype of the isolator

The prototype of the isolator is designed as a single chamber
with two gloves, see Figure 1, with the possibility of vaporized
hydrogen peroxide (VHP) sterilization. The basic dimensions of
the chamber are 850 x 1002 X 850 mm. The material of the inner
chamber is made of AlSI 316L with a ground surface to reduce
glare. The chamber is equipped with two powerful LED lights,
which are located in the ceiling of the cabin and increase the
overall visibility inside the chamber. Inside the cabin is a cus-
tom-developed gripping system that can mount various types
of cameras. The mentioned system can position the cameras at
any position along the side walls and ceiling in 6 DoF.

Figure 1 - Prototype of the isolator with a single chamber and two gloves

3.2 3D model of the isolator

A prototype of the isolator has been designed in 3D software
and, as such, offers the use of the isolator 3D model in a virtual
environment. Besides that, the Department of Immunotherapy
of the Institute of Hematology and Blood Transfusion, which
routinely manufactures products for clinical trials using aseptic
technology inside an isolator, has provided detailed 3D models
of items inside the isolator. 3D models of equipment, such as
Petri dishes, centrifuge tubes, expansion flasks, or electropora-
tion stations, were placed accordingly into the virtual isolator
with respect to the SOP for the manufacture of T cells with chi-
meric antigen receptors (CAR-T).

3.3 3D Reconstruction pipeline

To monitor the activities performed in the isolator, the detec-
tion and 3D tracking of objects present in the chamber have
to be handled. Each laboratory equipment and raw material
that enters the isolator needs to be uniquely labeled in order
to be recognized and its presence in the isolator approved. To
ensure that, 2D codes, such as QR, Data Matrix, etc., can be used.
For that purpose, we develop and implement approaches that
can identify objects based on their shape and unique 2D code
labeling. YOLO object detectors are used together with 2D code
readers provided by the pylibdmtx [30] and pyzbar [31] libraries.

Special attention has to be given to recognition of hand ac-
tions in glovebox environments, where operators perform tasks
while wearing gloves and interacting with laboratory equip-
ment. This setting introduces additional challenges, including
frequent occlusions and the fact that the hands may be partially
covered by tools or equipment inside the glovebox. To address
these challenges, we capture synchronized RGB and depth
video using cameras placed in the glovebox. The RGB stream
provides visual and contextual cues, while the depth sensor
provides geometric information that enables precise hand
localization and 3D pose estimation. Our method consists of
three main stages.

1.Hand Detection/Segmentation - In the first step,
hands in gloves are localized within each video frame
using detection or segmentation models such as YOLO,
MediaPipe palm detector, or transformer-based detec-
tors. The result is a bounding box or mask that isolates
the hands from the rest of the scene. Detecting gloved
hands is a challenging task, since gloves lack the natural
texture and structure of skin, and existing models
are usually trained on bare-hand datasets. To address
this, we plan to collect data relevant to our glovebox
environment and fine-tune existing models to improve
robustness.
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2.3D Pose Estimation - Using the depth channel, we
can estimate the 3D pose of the detected hands. This
describes their position and movement in space, which
is necessary for analyzing actions inside the glovebox.
Depth information makes the estimation more reliable,
especially when the hands are covered by gloves, hold-
ing tools, or partially hidden by the glovebox structure.
The resulting 3D representation provides information
that can be directly used in the action recognition stage.

3. Action/Interaction Recognition - Having 3D poses
available, we can analyze how they change over time
to recognize the actions performed. Activities will be
classified by analyzing the sequence of 3D hand poses
together with contextual RGB-D information, such as the
presence of tubes or other tools in the glovebox. This
combination allows us to capture both the motion of
the hands and their interaction with objects over time.
The reconstructed 3D hand and tool trajectories can be
mapped to predefined motion templates aligned with
GMP-relevant tasks, such as aseptic transfers, pipetting,
or vial handling. From these trajectories, the system
can extract quality parameters, for example, movement
precision, exposure times, and distances to critical bio-
logical materials, and automatically flag deviations from
SOP-defined tolerances, enabling objective detection of
operator errors or contamination risks.

To further improve robustness in cluttered glovebox envi-
ronments, we will employ a multi-stereo camera setup, with,
e.g., one stereo camera capturing the hands from the right and
another from the left. Combining these viewpoints will make
it possible to reduce occlusions, since a hand that is partially
covered by a tool in one view may still be visible in the other.
This setup will also support more precise 3D pose estimation, as
depth information can be obtained from multiple perspectives
and fused into a more reliable representation.

3.4 Data acquisition and preprocessing

In the proposed framework, data acquisition and preprocessing
can leverage modern stereo vision platforms such as Luxonis
cameras with DepthAl API or Stereolabs ZED cameras with ZED
SDK, both of which enable real-time 3D reconstruction in con-
strained environments. These systems support multi-view syn-
chronization and calibration, allowing fusion of data streams to
mitigate occlusions caused by operator posture or equipment.
Advanced preprocessing, including reflection filtering under
isolator lighting and adaptive background subtraction, is es-
sential to maintain robust tracking. Particular attention must
be given to personal protective equipment, mainly the gloves,
which obscure natural skin and joint features; hand-pose mod-
els can be retrained or fine-tuned on gloved hand datasets,
combined with depth cues, to ensure reliable detection of criti-
cal manipulations despite uniform textures or glare.

4 Results

4.1 Reading of 2D codes

Objects in the isolator are marked with 2D codes (e.g., Data Ma-
trix and QR codes), which must be detected and decoded. Data
Matrix codes were read using the Python library pylibdmtx [30],
while QR codes were decoded using pyzbar [31]. The Dynamsoft
Barcode Reader SDK [32] was also tested as an alternative com-
mercial solution. All tested libraries produced comparable results.

A key factor for successful code detection and decoding is
camera configuration, which results in pixel density per object
size at a specific distance. Experiments showed that each mod-
ule of a 2D code needs a minimum number of pixels to be reli-

ably read. For example, if we have a 1x1 cm Data Matrix code
with 14X 14 modules, at least 2 pixels per module are needed,
and depending on the camera field of view (FOV), resolution,
and distance of the code from the camera, these are either met
or not. Increasing the number of pixels per module improves
detection reliability but reduces the distance from the camera.
The experimental results, including the maximum reading dis-
tances for each code type, library, and camera configuration, are
summarized in Tables 1 and 2.

Experiments compared two cameras with different resolu-
tions and image processing. Using a Luxonis camera (OAK-D
PROW PoE) [33] with resolution 1280 800, 1 x 1 cm Data Matrix
codes (14 x 14 modules) could be reliably read at distance up to
13 cm, whereas a higher-resolution cameras with narrower FOV,
the Obsbot meet 2 with 1920 1080 resolution [34] achieved
larger reading distance (up to 65 cm) with the same 1x 1 Data
Matrix code.

Type of code | 1.0x1.0cm | 1.3x1.3cm | 2.0x2.0cm
Data matrix 13cm 11 cm 23cm
(pylibdmtx)

QR code 7cm 13cm 25cm
(pyzbar)

Data matrix 13cm 19cm 30cm
(DynamSoft)

QR code 9cm 13cm 26 cm
(DynamSoft)

Table 1 - Maximum reading distances for Data Matrix and QR codes using the
Luxonis camera with 1280x800 resolution

Type of code | 1.0x1.0 cm 1.3x1.3cm | 2.0x2.0cm
Data matrix 65 cm 70cm 110 cm
(pylibdmtx)

QR code 45 cm 70 cm 90 cm
(pyzbar)

Data matrix 60 cm 70cm 110 cm
(DynamSoft)

QR code 35cm 60 cm 80 cm
(DynamSoft)

Table 2 - Maximum reading distances for Data Matrix and QR codes using the
Obsbot Meet 2 camera with 1920x1080 resolution

4.2 Identification and 3D tracking of objects

We use a one-stage YOLO detector to identify laboratory tools in
each video frame. The detector is trained on photos of the target
objects from the laboratory using the standard augmentations
to capture appearance variability. At runtime, it operates in real
time and returns the class, bounding box, and confidence score.

After the identification of the laboratory objects, the ZED SDK
takes the left and right RGB images, rectifies them, estimates
disparity, and converts them into a depth map. From each detec-
tion, we extract a reliable depth estimate and reconstruct its 3D
coordinates (X, Y, Z) and then track these coordinates over time.

The baseline (distance between the two cameras) directly
controls depth accuracy and range - a larger baseline yields low-
er depth error at the same distance. Camera FOV also matters. A
narrower FOV acts like a longer lens, so objects occupy more pix-
els and depth estimates become more precise, see Figure 2. With
multi-view fusion of calibrated, time-synchronized ZED cameras,
the depth error is typically lower than the single-rig values as
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Figure 2 - Stereolabs baseline-distance tab. Estimated depth accuracy at various distances for a single stereo system with narrow FOV lenses [35].

provided in Figure 2. The improvement comes from combining
independent views, and that reduces random noise [35].

4.3 Scene reconstruction from 3D model and captured data

Using the obtained models, we have assembled a virtual scene
where we can perform experiments similar to those performed
in the real isolator environment. We can either use captured
data from the cameras, such as 3D trajectories of the objects
with relevance to each other, and revisit them in the virtual
environment, or simulate operations in the virtual scene and
capture the events using virtual cameras that can then be used
as inputs to detection algorithms (object detection/tracking,
2D codes reading, hand pose estimation).

In Figure 3, we provide an example from the created virtual
isolator environment. The scene contains a complete 3D model
of the isolator, including proper material assignment, together
with selected 3D models of items from the isolator environment.

In Figure 4, we utilize the 3D virtual isolator environment and
generate video feeds from the virtual cameras to obtain RGB

Figure 3 - Virtual isolator environment created in Blender software

7 YOLOVE Server - Camera Monitor = m X

pe

B 1

Figure 4 - Using a virtually generated camera feed in detection algorithms
(object detection/tracking, 2D code reading)

and depth maps of the visible scene. This information is used as
input to the detection algorithms to test their performance. The
whole system can work interactively, meaning the camera view
in the scene can be changed based on the user’s preference,
and the detection algorithms are applied immediately after-
wards and provide near real-time feedback to the user.

5 Discussion

The ability of dynamically recreating a 3D model of the envi-
ronment inside an isolator, where a human operator is carrying
out the aseptic manufacturing operation, allows us to increase
the accuracy of intervention detection, enhance contamination
risk assessment, and provide objective, reviewable records that
strengthen overall GMP compliance and process understand-
ing. When compared to classical 2D image analysis, which is
limited to pixel-level or frame-based evaluation of events, a
semantically enriched 3D scene model provides a much deeper
understanding of the environment. By combining the depth in-
formation, object recognition, tracking of operator movements,
and a knowledge database containing descriptions of manu-
facturing processes, such models can contextualize operator
actions in real time.

This semantic layer transforms raw video data into structured
knowledge that can be used for automated risk scoring, pre-
dictive contamination control, and even personnel training by
replaying and annotating interventions in a virtualized environ-
ment. Moreover, because the 3D reconstruction captures the
spatial relationships between operators, equipment, and sterile
products, it supports proactive decision-making. It facilitates
regulatory review by offering objective, high-level representa-
tions of aseptic practices.

Moreover, this setup can dramatically reduce the bandwidth
required for remote isolator monitoring (only the recognized
actions and 3D spatial information of the operator’s hands are
transmitted).

In this sense, semantic modeling represents the next evolu-
tionary step beyond conventional video monitoring, bridging
the gap between passive recording and intelligent, GMP-com-
pliant process understanding.

The software created in this way will need to be valid under
21 CFR Part 11, i.e,, meet the requirements for electronic records
(usually generated as a text log-file) and signatures to ensure
their reliability, security, and validity in accordance with the rules
of the US FDA. Key features are: audit trails that record all chang-
es, secure electronic signatures that are unique to the user and
legally binding, user access control to ensure authorization, data
encryption, and system validation that proves that the software
reliably functions according to its intended purpose.
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6 Conclusion

This study demonstrates the feasibility and benefits of using
advanced computer vision and 3D modeling to monitor oper-
ator actions in isolator-based gene therapy manufacturing. By
combining multi-view imaging, depth data, and semantic scene
reconstruction, the framework will enable precise tracking of
laboratory tools, materials, and operator hand movements,
even under personal protective environment-induced variabil-
ity and occlusion. Compared to conventional 2D monitoring,
the 3D models will provide a richer, contextual understanding
of aseptic practices, supporting real-time deviation detection,
contamination risk assessment, and traceable audit records.
This capability will not only enhance GMP compliance and pro-
cess integrity but also create new opportunities for predictive
quality assurance, remote monitoring, and operator training.
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