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Abstract

Bone age is a radiological indicator of bone maturity that is 
routinely assessed in children and adolescents to evaluate 
growth and diagnose endocrine or chronic diseases. This 
retrospective study verifies the accuracy of an artificial 
intelligence algorithm (Carebot AI Bones, Bone Age function; 
Carebot s. r. o.) for automatically estimating bone maturity 
from dorsopalmary X-ray images. We analyzed 96 anonymized 
images (20–216 months; median 108) taken between January 
and June 2025. The reference standard was independently 
established by a radiologist and anthropologist according to 
the GP atlas, with consensus in case of disagreement. The index 
test was the algorithm’s prediction in months. The primary 
endpoint was the mean absolute error (MAE) compared to a 
pre-specified non-inferiority limit of 12 months. Secondary 
measures included RMSE, bias, Pearson’s r, Bland–Altman limits 
of agreement, and proportions within ±6/±12/±24 months. The 
algorithm showed a high correlation with the reference standard 
(r = 0.981; 95% CI 0.970–0.989). MAE was 5.97 months (95% CI 
4.76–7.28), RMSE was 8.70, and bias was −0.27 with LoA −17.40 
to +16.86. Predictions were within ±6/±12/±24 months in 
66.7%/82.3%/96.9% of cases. Non-inferiority was met (t=−9.29; 
p<0.001). By gender, the MAE was 5.04 months for men (bias 
+2.79) and 6.82 months for women (bias −3.09). The lowest 
error was ≤60 months (MAE 3.40), with a slight underestimation 
occurring at 121–180 months (MAE 7.15; bias −3.47). The results 
show that the AI algorithm achieves an average error of less 
than 1 year across the entire pediatric age spectrum and meets 
the criteria for clinical acceptability, supporting its use as a tool 
to aid radiological decision-making.
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1 Introduction

Bone age (BA)—the radiographic estimate of skeletal 
maturity—remains a cornerstone of paediatric radiology and 
endocrinology because it contextualizes growth velocity, 
clarifies the aetiology of stature abnormalities, and informs 
both therapeutic timing and adult-height prediction [1]. In 
standard care, clinicians determine BA by visually matching a 
left-hand/wrist radiograph to reference standards. Greulich–
Pyle (GP) atlas [2], derived from mid-twentieth century North 
American children, is favored in everyday practice because an 
experienced reader can complete the match in 1–2 minutes. 
Recently, computer-assisted BA estimation has advanced 
rapidly. Early rule-based tools such as BoneXpert segmented 
predefined features and showed consistent performance 
across several European cohorts [3] but still required expert 
oversight in atypical cases. The advent of deep learning 
transformed this landscape, with convolutional neural 
networks (CNNs) trained on tens of thousands of radiographs 
capture maturation cues beyond handcrafted features. In the 
Radiological Society of North America’s 2017 machine‑learning 
challenge, leading CNNs achieved mean absolute errors 
(MAE) of roughly 4–5 months, on par with senior paediatric 
radiologists [4]. Subsequent external validations reported 

comparable accuracy, substantial time savings, and improved 
inter-reader agreement [5,6]. These advances have enabled 
clinical translation. Several deep-learning BA systems now hold 
regulatory clearance, nevertheless, regulatory approval does 
not guarantee generalizable performance, with domain shift in 
acquisition parameters, demographics, or disease prevalence 
lowering accuracy. Independent, site-specific validation is 
therefore necessary to demonstrate real-world safety and 
effectiveness [7].

The present retrospective study addresses this need by 
quantifying agreement between developed AI algorithm and 
expert GP assessments in 96 routine hand radiographs from 
a tertiary hospital. By analyzing overall error metrics and age-
stratified performance, we evaluate whether the algorithm 
maintains a clinically acceptable MAE (< 12 months) and 
supports integration into everyday paediatric practice.

2 Materials and Methods

2.1 Study Design

This retrospective, single-centre diagnostic‑accuracy study 
compares the AI algorithm automated bone age estimates 
with a dual‑expert Greulich–Pyle consensus reference on the 
same de‑identified left‑hand/wrist radiographs. Human readers 
were blinded to the AI output. For each case, the AI prediction 
and the consensus reference formed a paired observation for 
head‑to‑head analysis.

2.2 Software
The investigated AI algorithm (Carebot AI Bones, Bone Age 

function; Carebot s. r. o.) uses a convolutional neural network 
with a ResNet-50 backbone that outputs bone age in months. 
Because skeletal maturation exhibits sex-specific patterns, 
we trained separate models for males and females. The final 
training dataset was collected retrospectively from multiple 
institutions to improve generalizability. All training images 
were standard dorsopalmar hand/wrist radiographs from pati-
ents < 18 years. Sex labels were extracted from study metadata 
and verified during curation. After quality filtering (exclusion 
of non-paediatric or incomplete views), the training dataset 
includes 1,893 male images and 1,442 female images, totaling 
3,335 hand radiograph X-rays. Source DICOMs were converted 
for training, with intensity normalization applied. To mitigate 
domain shift and enhance robustness, we used data augmen-
tation comprising random intensity jitter (brightness/contrast), 
and standard geometric transforms (e.g., random flips/rotations 
within small ranges). Normalization statistics were tuned to the 
training distribution. Models were trained with mini-batches 
(typical batch size = 16) using Adam-type optimization and a 
low learning rate (e.g., 5 × 10–5 for the reference male run). Mo-
del selection was pre-specified by lowest validation MAE on a 
held-out internal split from the multi-centre training pool. At AI 
algorithm’s inference, the system reads the de-identified radio-
graph, applies the same normalization pipeline, routes by sex to 
the corresponding model, and returns a continuous bone-age 
estimate (months) together with per-study metadata for audit.

2.3 Data Collection

This single-centre, retrospective cohort was assembled at the 
Department of Radiology, University Hospital Olomouc from 
consecutive dorsopalmar left-hand/wrist X-rays acquired 
between 1 January and 30 June 2025. Case identification 
and data transfer were conducted under an institutional co-
operation and data-sharing agreement between University 
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Hospital Olomouc and Carebot (agreement ref.: Agreement 
on cooperation in the development of software) from 14th 
November 2025. Before transfer, all studies were fully de-
identified at source, with DICOM headers scrubbed of direct; 
no re-identification keys left the hospital network. Inclusion 
criteria included (i) patient age 0–18 years at imaging, (ii) native 
dorsopalmar left hand/wrist radiograph, and (iii) complete, 
artefact-free visualisation of hand and wrist. Exclusion criteria 
were (i) insufficient diagnostic quality (e.g., marked motion 
artefact, severe under/over-exposure, obscuration/cropping 
of key anatomy); (ii) presence of a cast, external fixation, 
or prominent postoperative hardware; (iii) gross traumatic 
deformity precluding reliable assessment; and (iv) duplicate 
examinations within the window, in which case the first 
complete study was retained. Applying these criteria yielded a 
final analytic dataset of n = 96 valid X-ray images.

2.4 Reference Standard

To establish the reference standard, each dorsopalmar left-
hand/wrist X-ray was first assessed by a board-certified 
radiologist using the Greulich–Pyle (GP) atlas to assign an initial 
bone-age estimate. A physical anthropologist then performed 
an independent second reading. Discrepancies were resolved 
at an adjudication session, and the consensus value (“atlas 
age”) was used as the reference standard. Human readers were 
blinded to the AI output for all cases.

The distribution in the analyzed cohort spanned 20–192 
months (median 108 months). The cohort comprised 46 males 
(47.9%) and 50 females (52.1%). Distribution across predefined 
bone-age (BA) bands is shown below.

Bone-age band (months) n (%)

≤ 60 24 (25.0)

61–120 35 (36.5)

121–180 35 (36.5)

> 180 2 (2.0)

Total 96

2.5 Statistical Analysis

Accuracy of the AI algorithm was quantified against the reference 
atlas age on a per-case basis. For each X-ray, we paired the AI-
predicted bone age with the atlas age and computed mean 
absolute error (MAE), root-mean-square error (RMSE), mean bias 
(AI − reference), Pearson’s correlation (r), Bland–Altman bias and 
limits of agreement, and the proportions within ±6, ±12, and 
±24 months of the reference. The prespecified primary endpoint 
was non-inferiority of MAE to a clinical margin δ = 12 months. 
Non-inferiority was concluded if the one-sided 97.5% upper 
confidence bound for MAE was < 12 months (equivalently, 
the upper bound of the two-sided 95% CI < 12). Confidence 
intervals for MAE, RMSE, bias, and Bland–Altman parameters 
were obtained by percentile bootstrap (10,000 resamples). As 
a sensitivity analysis, a one-sample, one-sided t-test versus δ 
was also reported. To relate estimates to biological maturation, 
we compared absolute deviations from chronological age: for 
each case we computed |AI − chronological| and |reference 
− chronological| and tested their paired difference using the 
Wilcoxon signed-rank test (two-tailed, α = 0.05), which avoids 
distributional assumptions for absolute-error data.

All analyses were performed in Python 3.10 (pandas, NumPy, 
SciPy); key results were cross verified in R 4.3. Bootstrap proce-
dures used a fixed random seed to ensure reproducibility.

3 Results

3.1 Overall Accuracy and Sex‑Stratified Performance

The AI algorithm’s predictions showed strong agreement with 
the atlas age (consensus Greulich–Pyle reference standard). 
The linear association was high (r = 0.981, p < 0.001). The mean 
absolute error (MAE) was 5.97 months (95% CI 4.76–7.25), with 
an RMSE of 8.70 months. Systematic error was negligible: the 
mean bias (AI – reference) was –0.27 months (95% CI –2.02 to 
+1.43), not different from zero. In terms of clinically relevant 
bands, 66.7% of predictions were within ±6 months, 82.3% 
within ±12 months, and 96.9% within ±24 months of the ref-
erence. Sex-stratified analyses demonstrated consistently high 
performance in both groups, with a small, opposing bias by sex 
that largely cancels in the pooled data. In males (n = 46), MAE 
was 5.03 months, RMSE 7.49 months, bias +2.79 months, and r 
= 0.990; 73.91% and 91.30% of predictions were within ±6 and 
±12 months, respectively. In females (n = 50), MAE was 6.82 
months, RMSE 9.68 months, bias –3.09 months, and r = 0.976; 
60.00% and 74.00% were within ±6 and ±12 months, respec-
tively. Virtually all cases of both sexes were within ±24 months 
(≥96%).

3.2 Age-Stratified Performance

We examined performance across the defined age groups (≤60, 
61–120, 121–180, >180 months). In the youngest group (≤60 
months, n = 24), the AI algorithm achieved the highest accu-
racy, with MAE 3.40 months and RMSE 4.00 months; 87.5 % of 
estimates were within ±6 months and all were within ±12 and 
±24 months. The correlation in this infant/toddler group was 
very high (r = 0.951), and a slight positive bias was observed (AI 
on average overestimated by +2.66 months). In mid-childhood 
(61–120 months; n = 35), error increased to MAE 6.47 months, 
RMSE 9.33 months. About 62.9% of predictions in this group 
were within ±6 months. The correlation remained strong (r = 
0.888), and bias was small (+1.3 months). In early adolescents 
(121–180 months, n = 35), error was slightly higher (MAE 7.15 
months, RMSE 10.2), with 57.1 % within ±6 months and 77.1 % 
within ±12 months. For the oldest patient group (>180 months, 

Table 1 – Distribution of patients across predefined bone-age bands in the 
analyzed cohort

Figure 1 – Example of the standard dorsopalmar left-hand/wrist X-ray 
(left) and the output of the AI algorithm (Carebot AI Bones, Bone Age func-
tion; Carebot s.r.o.) for automated bone age assessment (right)
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Table 2 – Overall and sex‑stratified performance of the AI algorithm versus the Greulich–Pyle reference standard (atlas age)

Figure 2 – Scatter (left) and Bland–Altman (right) plots illustrating agreement between AI-predicted and atlas bone age. Strong correlation and narrow 
limits of agreement indicate high accuracy with minimal bias.

n = 2), results are difficult to generalize due to the very small 
sample. In those two cases, the MAE was ~7.0 months with one 
prediction within 6 months of the reference and one large error 
(~13 months underestimation). Correlation is not meaningful 
for 2 cases (essentially N/A), but no systematic conclusion 
can be drawn from such a limited data subset. Notably, bias 
flipped sign across development: the AI algorithm overes-
timated in early ages (≤ 60: +2.66  m; 61–120: +1.30  m) and 
underestimated during puberty (121–180: –3.47 m). Across all 
subgroups, ≥ 94 % of predictions were within ±24 months.

Table 3 – Performance by atlas-derived bone-age group

Figure 3 – Examples of the output of the AI algorithm (Carebot AI Bones, Bone Age function; Carebot s.r.o.) for automated bone age assessment. For each 
case, the AI algorithm displays the chronological age (white) and the AI-estimated bone age (blue), while the column on the right shows nearest atlas exem-
plars (ranked candidate ages).

Sex N Pearson r MAE (mo) RMSE (mo) Bias (mo) ± 6 mo (%) ± 12 mo (%) ± 24 mo (%)

Overall 96 0.981 5.97 8.7 -0.27 66.67 82.29 96.88

Male 46 0.990 5.03 7.54 +2.83 73.91 91.30 97.83

Female 50 0.976 6.78 9.67 –3.06 60.00 74.00 96.00

Age Group 
(mo)

N Pearson 
r

MAE 
(mo)

RMSE
(mo)

Bias
(mo)

±6 mo (%) ±12 mo (%) ±24 mo (%)

≤ 60 24 0.951 3.40 4.00 +2.66 87.50 100.00 100.00

61 – 120 35 0.888 6.47 9.33 +1.30 62.86 77.14 97.14

121 – 180 35 0.813 7.15 10.22 –3.47 57.14 77.14 94.29

> 180 2 N/A 7.04 9.52 –7.04 50.00 50.00 100.00

3.3 Non-Inferiority Test and Power Analysis

To relate estimates to biological maturation, we compared 
absolute deviations from chronological age for the AI and 
for the reference method. Median absolute error from true 
age was 12.35 months for AI algorithm and 11.02 months for 
the reference atlas age; the paired Wilcoxon signed-rank test 
showed no significant difference (p = 0.11), indicating that AI-
derived bone ages diverge from true age to a similar extent as 
expert GP readings.
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For the prespecified non-inferiority assessment (margin δ = 
12 months), the observed MAE was 5.97 months (SD 6.41). A 
one-sided one-sample t-test rejected H₀: MAE ≥ 12 (t = –9.29, 
df = 95, one-sided p < 0.001), confirming that accuracy of 
the AI algorithm is non-inferior, substantially better than the 
12-month threshold. As a sensitivity analysis, the one-sided 
97.5% upper confidence bound for MAE lay below δ, likewise 
supporting non-inferiority.

A post-hoc power calculation based on the observed mean 
(5.97 months), SD (6.41), n = 96, and α = 0.025 (one-tailed) 
indicated ≈100% power to demonstrate non-inferiority at δ = 
12 months. Given the large margin between the point estima-
te and δ, the probability of a Type II error was effectively ne-
gligible. These findings show that the AI algorithm meets the 
predefined clinical acceptability criterion across the cohort and 
remain consistent within age- and sex-stratified analyses.

4 Discussion

The proposed AI algorithm (Carebot AI Bones, Bone Age 
function; Carebot s. r. o.) achieved sub-year error against a du-
al-expert Greulich–Pyle (GP) atlas reference (MAE 5.97 months; 
RMSE 8.70 months; bias −0.27 months; r ≈ 0.98), meeting the 
prespecified 12-month acceptability margin. In clinical terms, 
a ~half-year deviation from the atlas standard is negligible in 
paediatric endocrine practice and aligns with prior reports of 
deep-learning models showing sub-year errors and strong con-
cordance with expert assessment [1]. Agreement within clini-
cally relevant bands was high (±6 months: 66.7%, ±12 months: 
82.3%, ±24 months: 96.9%). Given that human readers can differ 
by over a year in a substantial minority of cases, these findings 
are consistent with expected expert-level variability [8]. Sub-
group analyses were consistent across demographics. Accuracy 
was highest in early childhood (≤ 60 months; MAE 3.40), with 
a modest underestimation around puberty (121–180 months; 
MAE 7.15, bias −3.47). Sex-stratified results showed small, op-
posing biases—+2.79 months in boys and −3.09 months in 
girls—that largely cancel in aggregate; both sexes remained 
well within the 12-month margin, in line with prior observations 
of no meaningful sex-related disparity. A few > ±24-month out-
liers clustered near early puberty, mirroring known variability 
during rapid growth.

Strengths include a consensus dual-reader reference, a pre-
specified clinical margin and analysis plan, and comprehensive 
agreement reporting. Limitations are the retrospective, sin-
gle-centre design, modest size with under-representation at 
older adolescence, and lack of workflow endpoints; generaliz-
ability to endocrine pathologies and late adolescence warrants 
prospective, multi-centre confirmation.

In practice, an automated estimate available within seconds 
can support paediatric radiology and endocrinology by stan-
dardizing assessments and reducing manual workload. Nota-
bly, prior work has shown that automated bone-age tools can 
reduce reading times by up to 87% [9]. Consistency may also 
mitigate inter-observer variability, important given that differ-
ences ≥1 year are not uncommon between human interpreters 
[10]. The intention is augmentation, not replacement; as a sec-
ond reader, the AI can assist trainees and provide confirmation 
for experienced radiologists. Observed performance (MAE < 12 
months) is compatible with regulatory expectations for deci-
sion-support software [11].

5 Conclusion

The AI algorithm achieved MAE 5.97 months, r = 0.98, and ≥ 
82% of predictions within ±12 months, with sub-year accuracy 
across all age and sex subgroups and negligible bias versus 

the consensus Greulich–Pyle reference. These results meet the 
prespecified ±12-month non-inferiority threshold, supporting 
use as a second-reader decision-support tool in paediatric 
radiology and endocrinology. Prospective, multi-centre 
studies—including older adolescents and children with growth 
disorders—should confirm generalizability and quantify 
workflow impact.

RETROSPEKTIVNÍ VALIDACE ALGORITMU UMĚLÉ 
INTELIGENCE PRO AUTOMATICKÉ STANOVENÍ 
KOSTNÍHO VĚKU NA PEDIATRICKÝCH 
RENTGENOVÝCH SNÍMCÍCH RUKY

Abstrakt

Kostní věk je radiologický ukazatel kostní zralosti, který se u dětí 
a adolescentů rutinně hodnotí k posouzení růstu a k diagnosti-
ce endokrinních či chronických onemocnění. Tato retrospektivní 
studie ověřuje přesnost algoritmu umělé inteligence (Carebot 
AI Bones, funkce Bone Age; Carebot s. r. o.) pro automatický 
odhad kostní zralosti z dorzopalmárních rentgenových snímků. 
Analyzovali jsme 96 anonymizovaných snímků (20–216 měsíců; 
medián 108) pořízených mezi lednem a  červnem 2025. Refe-
renční standard stanovili nezávisle radiolog a antropolog podle 
atlasu GP s  konsenzem při neshodě. Indexovým testem byla 
predikce algoritmu v  měsících. Primárním koncovým bodem 
byla průměrná absolutní chyba (MAE) ve srovnání s  předem 
stanovenou mezí neinferiority 12 měsíců. Sekundární ukazate-
le zahrnovaly RMSE, zkreslení, Pearsonův r, Bland–Altmanovy 
meze shody a podíly v rozmezí ±6/±12/±24 měsíců. Algoritmus 
vykázal vysokou korelaci s referenčním standardem (r = 0,981; 
95% CI 0,970–0,989). MAE činila 5,97 měsíce (95% CI 4,76–7,28), 
RMSE 8,70 a  zkreslení −0,27 s  LoA −17,40 až +16,86. Predikce 
byly v  rozmezí ±6/±12/±24 měsíců v  66,7  %/82,3  %/96,9  % 
případů. Neinferiorita byla splněna (t=−9,29; p<0,001). Podle 
pohlaví byla MAE 5,04 měsíce u mužů (bias +2,79) a 6,82 mě-
síce u žen (bias −3,09). Nejnižší chyba byla u ≤60 měsíců (MAE 
3,40), mírné podhodnocení se objevilo u 121–180 měsíců (MAE 
7,15; bias −3,47). Výsledky ukazují, že algoritmus AI dosahuje 
průměrné chyby pod 1 rok v celém spektru pediatrického věku 
a splňuje kritéria klinické přijatelnosti, což podporuje jeho pou-
žití jako nástroje pro podporu radiologického rozhodování.

Klíčová slova
kostní věk, Greulich–Pyle, pediatrická radiologie, umělá inteligence, 
validace, Bland–Altman, korelace shody
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